Bayesian network methodology was used in the catchment of Storefjorden, South Eastern Norway, to integrate models of phosphorus (P) abatement costs and effects, as well as models of lake P and eutrophication dynamics. The Bayesian network integrated model was used to explore and evaluate the probable (and improbable) outcomes and uncertainties of (i) the eutrophication problem and (ii) the cost-effectiveness analysis of the corresponding abatement measures. In addition, factors which affect the reliability of transferring cost-effectiveness data for nutrient abatement measures between river basins were detected with a view to informing Norwegian implementation of the EU Water Framework Directive, and the relative uncertainty of model components within the Bayesian influence network was evaluated, with an aim to uncovering "information gaps" in abatement planning, and as a tool for prioritising future eutrophication research.
Demonstration of the catchment run-off submodel:
http://demo.hugin.com/index.php/Catchment_phosphorous_run-off_network,_Morsa_Norway